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I. INTRODUCTION 

Essentially, the area Δ (v.e.)TR under the Specific Heat (CP) versus Temperature (T) 
plots between temperature limits, Experimental Test Temperature (TEXP) and Reactive 
Temperature (TR) is a measure of how much atomic vibratory energy explosives can 
absorb before a reaction occurs.  The reaction may be melting, phase change, 
decomposition, burning, or even detonation.  Thus, to a good approximation, it could be 
expected that if Δ(v.e.) TR amount of energy is suddenly added via impact shock loading, 
then a reaction may occur. 

This Δ (v.e.) TR concept, that impact shock sensitivity or shock induced reactivity of 
energetic materials could be related to their specific heat (CP) variation with temperature, 
was demonstrated in References [1] and [2] for RDX, TETRYL, PETN, TNT, and 
TATB, which are basic secondary reactive compounds. 

In References [3] and [4], the Δ (v.e.)TR ideas were demonstrated for HMX and HNS 
which are also important basic secondary explosive compounds.  The impact shock 
response of these seven compounds ranges from very insensitive to highly sensitive.  
Most of these seven basic energetic compounds have been the main ingredient of useful 
explosive mixtures. 

One such mixture is the plastic bonded explosive designated as PBX-9502 that is  
95 percent TATB and 5 percent KEL-F800 [5, 6].  PBX-9502 has been rather extensively 
tested via one-dimensional shock loading at various temperatures [7, 8, 9], and its 
thermal characteristics have also been experimentally explored [10, 11, 12].  Much of  
this important information has been collected, reported, or at least mentioned, in 
Reference [6].  Some of these data for PBX-9502 are listed in Tables 1, 2, 3, and 4. 

Utilizing this information, Δ (v.e.)TR concept computations were made for PBX-
9502.  The exploratory comparative results for this important energetic material provides 
considerable affirmation and support for the Δ (v.e.)TR theory of impact shock sensitivity. 

General details of the exploratory computations and experimental data comparisons 
involved in a general Δ (v.e.)TR assessment are contained in the following sections. 
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II. ANALYSIS 

This section contains excerpts from similar sections in References [1] and [3], which 
should be consulted for additional details.  

For some explosives, a good estimate of the critical particle velocity, CRPU , where a 
reaction (or detonation) occurs is: 

CR1PU  =  
AV

T

m
v.e.)( RΔ       (1) 

In some circumstances, a better estimate of the critical particle velocity is: 

CR2PU  =  
AV

T

m
v.e.)(2 RΔ = 2   CR1PU     (2) 

Where:  

RT(v.e.)Δ   = ∫
R

EXP

T

T
CpdT       (3) 

  
=  Thermal vibratory energy per atom between TEXP and TR,                      

Gram (Cm/Sec)2. 

 
CP  =  Specific heat per atom as a function of temperature. 

 
mAV = Average mass of an atom in the material, Grams (Appendix A).                            

 
TEXP     = Temperature at which experimental impact shock tests are                        

conducted.  This is normally room temperature (RT≈ 300 ˚K but 
can (and should) be done at higher and lower temperatures. 

 
TR        = Temperature at which some thermally induced reaction occurs 

(decomposition, melting, phase change, detonation, etc.). 

 
CR2PU        = Particle velocity, UP, such that the shock induced internal energy 

(ei) is equal to Δ(v.e.)TR. 
 

CR1PU        = Particle velocity, UP, such that the total shock induced energy (et) 
(kinetic plus internal) is equal to Δ(v.e.)TR. 

 
et  =  mAVU2

P = total shock energy per average atom. 
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ei = 2
mAV U 2

p  = ek =  internal or kinetic energy of the shocked material per average 

atom. 

 

Some explosives, when heated to higher and higher temperatures, melt before they 
explode (RDX and TNT, for example)  This melting will require that the heat of fusion 
(ΔHF) be absorbed by the material at T=TMELT conditions before the temperature will 
increase [13,14].  Consequently, if TEXP is less than TMELT, then the total heat absorbed 
from T = TEXP to T = TEXPL = TR is: 

∫=Δ
MELT

EXP
 R

T

T
pT dtC  (v.e.) + Δ HF + ∫

EXPL

MELT

T

T
pdT.C  (4) 

So, for solid energetic materials which melt prior to explosion, then Δ (v.e.)TR, as 
defined by Equation (4) is employed in Equations (1) and (2) to compute UPCR1 and UPCR2, 
respectively.  Note that melting is just one example of a phase transformation which may 
require an enthalpy increment (ΔHT) to be activated.  For example, HMX can exist in 
different solid polymorphic forms.  At a certain temperature, TT, one form may change to 
another form if the heat energy of transformation (Δ HT) is supplied.  So, ΔHT should be 
added to Equations (3) and (4) if TR is greater than TT. 

Note that Δ (v.e.)TR as defined by Equations (3) and (4) is actually an enthalpy 
increment (ΔH).  However, it was shown via numerical examples in Appendix B of 
Reference [1] that, under the experimental CP acquisition conditions, the pressure times 
volume terms were minute compared to the CP integral, ∫

R

EXP

T

T
CpdT. Thus, ∫

R

EXP

T

T
 CpdT is 

essentially all of the internal energy difference caused by thermal stimulation during 
standard tests at atmospheric pressure to determine the specific heat characteristics. 

Once Δ (v.e.)TR and CRPU  values are computed, the corresponding shock velocity 
)(U CRS  is ascertained from experimental data for US as a function of the particle velocity, 

UP.  The experimental relationship is usually linear and written empirically as: 

US = CO + S UP. (5) 

Table 3 lists the constants, CO and S and the data sources, for the explosives 
considered in this investigation. 

When UP = UPCR and US = USCR are determined, the shock pressure is computed from 
the following well known relation: 

PS = oρ  US UP,      (6) 

Where oρ  = Material density (grams/cm3). 
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Then CRPU , CRSU , and CRSP  may be compared to experimental shock-induced 
reaction threshold information to check the validity of the above Δ (v.e.)TR theory to 
denote reactive conditions under impact shock stimuli.  The numerical computations 
involved in a Δ (v.e.)TR assessment are straightforward and simple and may be performed 
with a hand-held calculator. 

It must be emphasized that any possible effect of pressure on CP is not taken into 
account in the present analysis.  The basic idea is that if a quantity of thermal vibration 
energy, Δ (v.e.)TR, under quiescent conditions is able to create a reaction, then the same 
amount of energy added by an impact shock (ei or et) should also cause some type of 
reaction.  The shock-induced reaction may not be the same type as the temperature 
induced reaction, but will nevertheless be a reaction of some kind.  It may be less or more 
severe than the thermally induced reaction. 

The CP unit of calorie/(atom - °K) is employed in plots of CP versus T information 
which are shown in this report.  This is because the Boltzman constant, kB=0.33 x 10-23 
calories/(atom - °K) and the maximum CP at high temperatures for many materials is 
3kB ≈ 1.0 x 10-23 calories/(atom - °K).  This is a good mnemonic reference level for 
comparison purposes.  It was noted in Reference [1] that the average CP per atom for 
most polymers never reaches the 3 kB level before a reaction (phase change, melting, 
glass–to-rubber transition, or even detonation) occurs. 

Actually, CP for some atoms or combinations of atoms, probably reaches the 3 kB 
level and causes a reaction at some TR.  But CP for a large number of atoms remains 
much less than 2 kB.  Thus, a large amount of the possible thermal vibratory energy is 
never activated and the average CP per atom remains relatively low [15].  In many cases, 
important temperature-induced reactions occur near the average CP ≈ 2 kB level at 
moderate temperatures (400 to 600 °K). 

It was shown in References [1] and [3] that the magnitude of the average CP per 
atom at a given temperature for seven explosives did not differ very much from each 
other.  The reaction temperatures, TR, for these explosives did differ considerably, but 
mAV values for these explosives were very similar.  These observations, in conjunction 
with Equations (1) through (6), were sufficient to establish an overall correlation of 
experimental “shock sensitivity” data with reaction temperatures, TR (primarily TMELT 
and TEXPL). 

This report documents a similar correlation for PBX-9502 with TEXPL at four 
different TEXP conditions. 
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III. APPLICATIONS 

Strictly speaking, for a valid check of the Δ(v.e.)TR concept as outlined in Section II, 
the following experimental information is necessary for the same reactive energetic 
substance. 

Thermal Properties: 

1. Specific heat (CP) as a function of temperature (T). 
2. TR = TMELT (melt), TT (Transformation), TEXPL (explode) 
3. ΔH = Heat of fusion (ΔHF, melt) and heat of transformation (ΔHT). 

 

Impact Shock Related Properties: 

1. oρ , Material density (gram/cm3) at each test condition temperature, TEXP. 
2. US (Shock velocity) as a function of particle or mass velocity (UP) for each 

    TEXP. 
3. Threshold DTPU  (or DTSP ), where below them detonation will not occur, and 

    above them detonation will occur for each TEXP. 

 

It is rather difficult to find all of this consistent information for each TEXP.  In fact, it 
is unusual to locate impact shock results for a TEXP other than RT ≈ 290 – 300°K).  

However, there was one energetic material, PBX-9502, where impact shock-related 
data as described above, were available for four TEXP conditions (-55 °C, RT, 75 °C, and 
252 °C).  Even so, some estimates, approximations, and extrapolations had to be made to 
fill in certain data gaps.  This is particularly true for certain CP data and the threshold UP 
or PS (for one TEXP condition).  Additional details of these data extension procedures are 
given in the following subsections. 

A. PBX-9502 Experimental Thermal Data 

Reference [10] contains experimental specific heat, CP (Cal/Gram – °C), data 
in the temperature range of 37 °C (310 °K) to 177 °C (450 °K).  These data had been  
fit to a straight line linear relation which could easily be extended backwards to  
TEXP = -55 °C.  Table 2 contains these data and also lists their values when converted  
to Cal/Atom – °C units. 

Figure 1 compares this PBX-9502 and TATB CP [Cal/(Atom – °C) data.  As 
expected, CP for these two materials does not differ very much in magnitude because 
PBX-9502 is 95 percent TATB.  The TATB non-linear (quadratic fit) CP data came 
primarily from Reference [5] with some extrapolation necessary at temperatures higher 
than 300 °C (573 °K).  This estimated extension of the TATB CP to 409 °C (682 °K) was 
essential to the Δ(v.e.)TR analysis reported in References [1] and [2], and the present  
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report as well. This was because some estimate of the PBX-9502 CP was needed up to at 
least 396 °C (699 °K), which is given in Reference [12] as an explosion temperature 
(TEXPL).  To acquire this estimate, the linear relation for the CP of PBX-9502 was 
extended from 177 °C (450 °K) to 292 °C (565 °K).  From that point, the extended CP for 
TATB was used for PBX-9502 also. 
 

These CP results (Cal/(atom –°C) for PBX-9502 are listed in Table 2 and 
displayed graphically in Figure 1.  The cross-hatched areas shown below this PBX-9502 
CP versus T plot (between TEXP and TR = TEXPL) are equal to Δ(v.e.)TR as defined by 
Equation (3). 

The authors of Reference [12] heated PBX-9502 samples with a High Energy 
Electron Beam (HEEB) and provided the following information: 

TEXPL = Thermal explosion temperature 

   = 396.0 ±  5.0 °C = 669.0 ±  5 °K 

   = Temperature at which the HEEB heating rate equals the 
     chemical reaction rate. 

  

TIT  = Thermal ignition threshold 

   = 140.0 ±  3.0 Cal./Gram 

= Explosive heat dose 

= Amount of thermal energy the energetic material can 
absorb before it explodes. 

 

Reference [12] also gave TEXPL = 409.0 ±  5.0 °C and TIT = 144.0 ±  5.0 
Cal/Gram for TATB.  The Δ(v.e.)TR results for TATB reported in Reference [1] for TEXP 
= RT and TR = TEXPL = 409 °C agreed well with this TIT  value. 

The extrapolations and assumptions involved in extending the PBX-9502 
experimental CP data to lower and higher temperatures detract somewhat from 
credibility, but appear reasonable compared to CP data from other explosives. Also, as 
detailed later, a certain Δ(v.e.)TR value compares very well with the TIT value given 
above for PBX-9502.  This lends considerable credence to the PBX-9502 
extrapolations/extensions as Δ(v.e)TR is directly related to the CP magnitude via  
Equation (3). 
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B. PBX-9502 Experimental 1-D Impact Shock Data 

References [7] and [8] both document shock sensitivity (Hugoniot and run 
distance to detonation) experimental data for PBX-9502 at ambient room temperature 
(RT = TEXP ≈ 12 – 27 °C).  In addition, Reference [8] also contains shock sensitivity 
results for PBX-9502, which was collected at -55 °C, 75 °C, and 252 °C.  These 
investigators illustrated shock sensitivity to test temperatures by comparing run-distance-
to-detonation (XD) versus shock pressure (PS) data on double-log Popalato (POP) plots.  
Most of these data are also graphically displayed in Reference [6]. 

From these sources, the following information was extracted which was 
essential to the present analysis where detonation threshold particle velocities ( DTPU ) 
were compared to theoretical CRPU  results defined in Section II: 

a. oρ  (Density, grams per cubic centimeter) as a function of temperature, 
TEXP.  These oρ  values are listed in Tables 3 and 5. 

b. US (Shock Front Velocity) as a function of UP (particle or mass velocity) 
generated in the PBX-9502 specimen for each TEXP.  The pertinent values 
of CO and S, for Equation (5), are listed in Table 3. 

c. Threshold DTPU  values, just sufficient to cause detonation, were 
determined from tabular or graphical (POP plots) data for PS (or UP) as a 
function of run-distance-to-detonation, XD, contained in References [6, 7, 
and 8]. 

 

The procedure to determine the threshold UPDT values is illustrated in Figures 2 
through 5, where UP versus XD is plotted on a linear scale from the tabulated/plotted data 
in References [6], [7], and [8]. 

For TEXP = RT, 75 °C, and 252 °C, tabulated UP versus XD experimental data 
asymptotically approach a practical detonation threshold value of DTPU as XD gets larger 
and larger as shown in Figures 3, 4, and 5, respectively. 

The values estimated by this procedure are 0.88, 0.82, and 0.46 km/sec for  
TEXP =     RT, 75 °C and 252 °C, respectively.  These estimated UPDT threshold values 
also appear reasonable as shown in Figures 6, 7, and 8, where UP is plotted versus tD 
(time to detonation) for TEXP = RT, 75 °C and 252 °C, respectively. 

The US versus Up variation for PBX-9502 at RT conditions indicates some type 
of impact-induced reaction is occurring around Up = 1.0 ±  0.2 km/sec where a slope 
(dUS/dUp) change is evident [7, 20]. This is consistent with the RT DTPU  estimated result 
of 0.88 km/sec. 
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The estimation of the detonation threshold UPDT for TEXP = - 55 °C was not 
quite so straightforward as that for TEXP = RT, 75 °C, and 252 °C.  The reasons for this 
are detailed as follows. 

The shock sensitivity data (Ps, XD) from PBX-9502 experiments at  
TEXP = -55 °C were apparently documented in Reference [9].  References [6] and [8] 
show these results in the form of XD versus PS points on a double-log POP plot.  For most 
explosives, XD versus PS is a linear (straight line) function on a log-log POP plot.  This 
seems to be true for PBX-9502 at -55 °C and LX-17 at ambient (RT) conditions, which 
both exhibit the same trend (slope) and magnitude. 

However, the PBX-9502 data plot at -55 °C began at XD ≈  10mm with a 
corresponding PS of about 140 kbars.  This is obviously somewhat different from the 
threshold values for this condition.  A linear extrapolation back to XD ≈  50.0 mm gives a 
PS value of about 90.0 kbars, which should be close to the threshold (go or no go) value.  
The corresponding result of UPDT is 0.95 km/sec, which is found via Equations (5) and (6) 
with the appropriate input conditions. 

Table 4 gives a list of the XD versus PS points extracted from the PBX-9502 
data for TEXP = -55 °C, shown in Figure IV-9 of Reference [6].  The corresponding values 
of UP are also listed in this table.  They are plotted versus XD in Figure 2 of the present 
report where an extrapolation is made to yield a threshold value of DTPU  equal to around 
0.94 or 0.95 km/sec for this TEXP condition. 

All of this extrapolation to estimate this detonation threshold DTPU  value at 
TEXP = -55 °C detracts from credibility, but the result seems reasonable (with the proper 
trend and magnitude) as shown in Figure 9. 

Figure 9 depicts the estimated detonation threshold UPDT values versus TEXP.  
These results are also listed in Table 5.  It is these DTPU  results (determined basically 
from experimental data) that the computed CR1PU  and CR2PU  are compared with in order to 
check the validity of the Δ(v.e.)TR concept. 

Δ(v.e.) TR magnitudes (and thus CR1PU  and CR2PU  magnitudes) also depend 
entirely on experimental information (CP vs. T and TR).  Therefore, a check on the 
validity of the Δ(v.e.) TR concept is essentially a check on the consistency of the 
experimental thermal and impact shock data. 
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C. PBX-9502 Δ(v.e.)TR, UPCR, and PSCR Results 

This subsection delineates the combination of information from both A and B 
sub-sections to systematically compute Δ(v.e.) TR, UPCR, and PSCR results for each 
experimental test condition (TEXP) with a plausible reactive temperature (TR) value. 

Basically, Δ(v.e.)TR was computed via numerical integration of the area under 
the PBX-9502 CP versus T Data Plot (Fig. 1) between TEXP and TR.  These areas were 
either trapezoids or rectangles because the CP variation with T was linear or constant as 
discussed above. 

Δ(v.e.)TR was evaluated for each of the four temperatures (-55 °C, RT, 75 °C 
and 252 °C) where experiments were conducted.  This was done for only one reactive 
temperature (TR = TEXPL = 396 °C = 669 °K) given in Reference [12] as the temperature 
where an explosion occurred under the rapid heating from a HEEB. 

PBX-9502 can explode at lower temperatures, particularly if soaked for a long 
period of time (14 hours) at a constant temperature just above the so called Arrhenius 
critical temperature.  This is TCR = 296 °C = 542 °K which is described in Reference [11] 
as: 

“That surface temperature at which the internal energy generated 
  by chemical decomposition is greater than that which can be  
  removed through the surface by thermal conduction.” 

If soaked at a temperature below TCR, apparently no explosion occurs.  TCR = 
296 °C = 542 °K was not employed as a reactive temperature, TR, in the present analysis 
because the time scales involved in these so called Arrhenius tests (hours) and impact 
shock loading (µsec)  are vastly different.  The rapid heating (energy input) during HEEB 
tests [12] is much more compatible to impact shock loading energy deposition conditions 
than slow cook-off tests. 

Thus, TR = TEXPL = 396 °C = 669 °K from the HEEB tests [12] was employed 
for the Δ(v.e.)TR computations. 

Table 6 lists the Δ(v.e.)TR values computed for each of the four temperatures 
(TEXP) where impact shock experiments were conducted.  Table 6 also lists the associated 
results for UPCR1 and UPCR2.  Table 7 lists the corresponding USCR and PSCR information. 

UPCR1 and UPCR2 are plotted versus TEXP in Figure 9 where, for comparative 
purposes, the estimated detonation threshold, UPDT, results are also shown. 
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IV. DISCUSSION 

Reference [8], in particular, illustrated PBX-9502 impact shock sensitivity to 
different test condition temperatures (TEXP).  This was accomplished via impact testing at 
different temperatures and the results were presented in POP plots (XD vs. PS) from 
Figure 5 in Reference [8].  There are both amplitude and slope changes which illustrate 
impact shock sensitivity to temperature.  For instance, PBX-9502 at TEXP = -55 °C and 
+75 °C are slightly above and below, respectively, the POP plot for ambient RT 
conditions.  So, there was not a large change in shock sensitivity at TEXP = -55 °C and 
+75 °C (compared to TEXP = RT), but there was a large change (increased shock 
sensitivity) for TEXP = 252 °C. 

This report attempts to provide a quantitative explanation for the temperature-
related impact sensitivity phenomena described above.  These trends are in agreement 
with the detonation threshold UPDT data (Section III-B) listed in Table 5 and depicted 
versus TEXP in Figure 9.  This is, perhaps, to be expected because the DTPU results were 
derived from the same experimental POP plot data.   

There is not much difference in: 

UPDT = 0.94  km/sec  TEXP = -55 °C 
UPDT = 0.88  km/sec  TEXP = RT 
UPDT = 0.82  km/sec  TEXP = 75 °C 

There is only 0.06 km/sec difference in DTPU for ambient RT and DTPU  for  
TEXP = -55 °C and DTPU  for TEXP = 75 °C. 

This same trend shows up in the computed results for CR1PU  and CR2PU  at  
TEXP = -55 °C, RT and 75 °C.  Fundamentally, there is just not that much difference 
between ∫

R

EXP

T

T
CPdT = Δ(v.e.)TR for these conditions, as shown in Table 7.  CRPU  is 

proportional to the square root of Δ(v.e.)TR which makes the differences in CRPU  even 
less. 

When TEXP = 252°, this is much closer to TR = 396 °C than TEXP for the other three 
test conditions.  The value of ∫

396

252
CPdT = Δ(v.e.)TR for this case is less than half of 

Δ(v.e.)TR for the other three test conditions (Table 7).  Consequently, the UPCR values for 
TEXP = 252 °C are considerably less than UPCR results for the other three test cases at 
lower temperatures.  This is because much more heat energy had been added to the 
explosive target before it was impact shock loaded.  This is consistent with the 
experimental UPDT results for this test case (Table 5 and Fig. 9). 
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It should be noted that TR = 396 °C for PBX-9502 is rather large compared to most 
explosives [1 and 3].  For TR values much less than this, these explosives will exhibit 
more variation in impact shock loading sensitivity at temperatures closer to ambient RT 
(say -55 ° or 75 ° C) than PBX-9502.  This follows from the integral limits (TEXP and TR) 
in the definition of Δ(v.e.)TR. 

One highly affirmative check on the Δ(v.e.)TR computations with TEXP = RT (20 °C) 
and TR = 396 °C is as follows for these PBX-9502 conditions: 

Δ(v.e.)TR  = 247.8165(10-23) calories per average atom (Table 6). 

 
=  136.0747 cal/gram because mAV = 1.82118(10-23) grams per 

average atom of PBX-9502.  

This compares rather well with: 

TIT   = 140.0 +/- 3.0 cal/gram 

=   thermal ignition threshold from HEEB tests (see Section III.A 
 and Reference [12]). 

This is certainly indicative of reasonably good values of CP versus T information for 
the Δ(v.e.)TR computation at this condition. No adjustments to the CP versus T 
information were made in order to yield this good comparison between these Δ(v.e.)TR 

and TIT values.
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V. CONCLUSIONS 

Based on the good comparative results described in the preceding section and the 
previous work, documented in References [1] through [4], it is concluded that the 
Δ(v.e.)TR concept for explosives: 

1.  Provides a quantitative connection between impact shock sensitivity 
( DTPU or DTSP ) and the thermal properties (CP and TR). 

2.  Illustrates the consistency between experimental impact shock results and the 
thermal properties. 

3.  Provides additional support for the premise that the specific heat per average 
atom (at a given temperature up to TR) has approximately the same magnitude.  See 
References [1] through [4] where this is illustrated for several important secondary 
CHNO energetic materials. 

4.  Indicates that high reactive temperatures (TR) are related to phenomenal impact 
shock insensitivity such as exhibited by TATB and PRX-9502.  That is, as TR becomes 
larger, higher impact shock pressure (PS), or actually larger particle velocity (UP), is 
required to initiate detonation.  This is quantitatively explained by Paragraph 3 above and 
the basic definition of Δ(v.e.)TR  that is Equation (3) where the upper limit of the integral 
is TR.  As TR increases, so does Δ(v.e.)TR which is the amount of heat energy (or impact 
shock energy) that can be absorbed before a reaction occurs. 
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VI. RECOMMENDATIONS 

In order to perform this comparative analysis, the amount of experimental data 
extrapolation and judicious extension necessary to provide certain impact shock and 
thermal information suggests that: 

1.  Experimental CP versus T data should be collected for as wide a range of T as 
possible on both sides of ambient (RT) conditions. 

2.  Plane impact shock detonation thresholds (UPDT of PSDT) should be delineated at 
each temperature (TEXP) where these experiments are conducted. 

3.  Along with recommendation No. 2, US versus UP data are also needed at each 
TEXP in order to compute USCR and PSCR from the UPCR results. 

These are generalizations of the specific recommendations made in Reference [1].  
They apply, of course, to present explosives, but are particularly relevant to new 
explosives under development. 

It is realized that these recommendations may be difficult, or practically impossible, 
to perform, particularly at high temperatures where a violent reaction may occur. 

One other recommendation, or admonishment, to impact shock investigators is: 

Pay as much attention to particle (or mass)  
velocity (UP) magnitudes as a measure of  
shock induced reactions as is currently  
bestowed on shock pressure (PS) levels. 

 

This advice is solidly based on the investigations documented in References [1] 
through [4] and this report, plus additional studies concerning other shock loading 
induced reactions of solid materials not cited herein. 
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Table 1.  Thermal Properties of TBX-9502 

Property Reference Value 
   

TEXPL Thermal Explosion Temperature [12] 396.0 +/- 5.0 °C 
669.0 +/- 5.0 °K 

   
TIT Thermal Ignition Threshold [12] 140.0 +/- 3.0 

Cal/Gram 
   

Δ HF Heat of Fusion [11] 50.0 Cal/Gram 
at 420.0 °C (693 °K) 

   
CP Specific Heat [5, 6, 10] See Table 2. 

   
TCR (See IIIC for Definition) [6] 

 
 

[11] 

344.3 ˚C to 356.0 ˚C 
617.3 ˚K to 629.0 ˚K 

 
269.0 °C 
542.0 °K 
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Table 2.  PBX – 9502 Specific Heat (CP) 

T T 0.00059T(°C) CP CP Comments 
      

°C °K CAL/(Gram-°C) CAL/(Gram-°C) CAL/(Atom-°C) ~ ~ ~ ~ ~ ~ 
      

-55* 218* -0.03245 0.21655 0.39438 * 10-23  
0 273 0.0 0.24900 0.45347 * 10-23 PBX – 9502 Linear 

17 290 0.01003 0.25903 0.47174 * 10-23 Extrapolation 
20* 293* 0.01180 0.26080 0.47496 * 10-23  
27 300 0.01593 0.26493 0.48249 * 10-23  

      
37 310 0.02183 0.27083 0.49323 * 10-23 PBX – 9502 Test 

75* 348* 0.04425 0.29325 0.53406 * 10-23 Data *** 
100 373 0.05900 0.30800 0.56090 * 10-23  
177 450 0.10443 0.35340 0.64370 * 10-23  

      
227 500 0.13393 0.38290 0.69730 * 10-23  

252* 525* 0.14868 0.39770 0.72420 * 10-23 PBX – 9502 Linear 
275 548 0.16225 0.41125 0.74896 * 10-23 Extrapolation 
280 553 0.16520 0.41420 0.75433 * 10-23  

      
300 573 ~ ~ 0.75910 * 10-23 End of TATB Data

396** 669** ~ ~ 0.75910 * 10-23  TATB Data  
Extrapolation 

 

*   T = TEXP (Experimental Test Condition, [8]) 

** T =  TEXPL (PBX – 9502 Explosion Temperature [12]) 

***  PBX – 9502  CP = 0.249 + 0.00059T (°C) for 37 °C ≤ T ≤ 177 °C, Ref. [10] 

PBX – 9502  mAV = 1.82118 * 10-23 Grams/Atom 
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Table 3.  Impact Shock Loaded Material Data for US = CO + S UP Relation 

      
Material TEXP ρO CO S Source Remarks 

       
~ °C Grams KM ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 °K CM3 SEC    

↓ ↓      
↓ -55 °C 1.91 3.31 1.65 [8] See Figure 6 in [8]. 

PBX- 
9502 218 °K      

↑ ↑      
↓ ↓     
↓ 20 ± 8 °C 1.891 1.857 3.15 [7] UP  ≤ 0.50 KM/SEC 
↓ 293 ± 8 °K      
↓ ↓      

↓ ↓  Non-
Linear 

  US  = 1.392201 + 
5.153578 UP 

↓ RT  See 
Remarks 

 [7] -2.421567 UP
2 

+0.561615 UP
3 

↓ ↑  & Fig. 4 
in [7] 

 For 0.5 < UP < 1.2 
KM/SEC 

↓ ↑      

↓ ↑  2.938 1.77 [7] 1.2 ≤ UP < 2.3 
KM/SEC 

↓ ↓      

↓ RT 1.891 1.90 3.00 [20] UP ≤ .082 km/sec 

↓ ↓ 1.891 2.90 1.78 [20] UP ≥ 0.82 km/sec 

↓ 75 ± 2 °C 1.857 2.60 1.91 [8] See Figure 6 in [8]. 

↓ 348 ± 2 °K      

↓ ↑      

↓ ↓      

↓ 252 ± 2 °C 1.70 1.33 3.08 [8] See Figure 6 in [8]. 

↓ 525 ± 2 °K      

↓ ↑      
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Table 4.  PBX-9502 UP Versus XD  Information From Popolato Plots in 

References [6] and [8] for TEXP = -55 °C = 218 °K 

        
 XD 

[6,8] 
PS 

[6,8] 
Comment ρO  UP 

 
US 

 
PS 
 

        
 MM KBAR  GRAM/CC KM/SEC KM/SEC KBAR 

 1.4 250.0 Note 1 1.91 2.00 6.6100 252.50 
 2.0 230.0 

  

1.88 6.4120 230.24 
 3.0 205.0 

  

1.74 6.1810 205.42 
 7.0 160.0 

  

1.47 5.7355 161.04 
 10.0 140.0 

  

1.33 5.5045 139.83 

 18.0 120.0 Note 2 

 

1.19 5.2735 119.86 

 30.0 105.0 

  
1.08 5.0920 105.04 

 40.0 95.0 

  
1.00 4.9600 94.74 

 50.0 89.0 

  
0.95 4.8775 88.50 

 >50.0 89.0 

  

0.94 4.8610 87.27 
 
 
    Note 1.  From Figure IV-9 in [6]. 

    Note 2.  Linear Extrapolation 

    Note 3.  Us  = 3.31 + 1.65Up 

    Note 4.  PS  = ρO US UP  
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Table 5.  PBX-9502 Estimated Impact Shock Induced Threshold Information  
From UP, VS, XD  Data 

TEXP TEXP XD UpDT UsDT PsDT ρo  Comments  

°C °K MM KM/SEC KM/SEC KBA
R GR/CC ~ ~ ~ ~ 

-55 218 ≈50.0 
>50.0 

0.95 
0.94 

4.8775 
4.8610 

88.50 
87.27 1.91 See Figure 

2. 
 

12 – 
28 

(RT) 

285– 
301 
(RT) 

≈40.0 
39.9 

0.88 
0.88 

4.4348 
4.46 
EXP. 

73.92 
74.80 
EXP. 

1.891 

See 
Figures 3 

& 6. 

75 348 ≈40.0 0.82 4.1662 63.44 1.857 
See 

Figures 4 
& 7. 

252 525 ≈40.0 0.46 2.7468 21.48 1.70 
See 

Figures 5 
& 8. 
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Table 6.  Computation of UpCR1 and UpCR2 

ITEM 
~ mAV TEXP TR Remarks ∫

R

EXP

T

T
pdTC  ∫

R

EXP

T

T
pdTC  ∫

R

EXP

T

T
pdTC  

ΔHT Δ(v.e.)TR 

Δ(v.e.)TR 

−−−−−−−−−−−− 
mAV 

 

UpCR1 UpCR2 

~ Grams 
*10-23 

°C 
°K 

°C 
°K ~ Cals 

*10-23 
Joules 
*10-23 

G(Cm/Sec)2 

*10-13 
G(Cm/Sec)2 

*10-13 
G(Cm/Sec)2 

*10-13 
(Cm/Sec)2 

*10+10 Km/Sec Km/Sec 

PBX-
9502 1.82118 -55 

218 

396 
669 

(TEXPL) 
No ΔH 280.4168 1,173.264 1.173264 0.00 1.173264 0.64423 0.8026 1.1351 

PBX-
9502 1.82118 

20 
293 
RT 

396 
669 

(TEXPL) 
No ΔH 247.8165 1,036.864 1.036864 0.00 1.036864 0.56933 0.7545 1.0671 

PBX-
9502 1.82118 75 

348 

396 
669 

(TEXPL) 
No ΔH 220.0683 920.7658 0.9207658 0.00 0.9207658 0.50559 0.7110 1.0056 

PBX-
9502 1.82118 252 

525 

396 
669 

(TEXPL) 
No ΔH 108.7080 454.8343 0.4548343 0.00 0.4548343 0.24975 0.4997 0.7067 
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Table 7.  Computation of UsCR and PsCR 

ITEM 
~ 

TEXP 
°C 
° K 

ρO 

Grams/Cm3 

CO 
 

Km/Sec 

S 
 

~ 
Remarks 

UpCR1 

 
Km/Sec 

 
UsCR1 

 
Km/Sec 

 

PsCR1 

 
Kbars 

TR 

°C 
° K 

UpCR2 

 
Km/Sec 

UsCR2 
 

Km/Sec 

PsCR2 

 

Kbars 

PBX-9502 
-55 
218 1.910 3.31 1.65 

 
No ΔH 0.8026 4.6343 71.042 

396 
669 

(TEXPL) 
1.1351 5.1351 112.368 

PBX-9502 
20 
293 
(RT) 

1.891 Non - Linear 
See Table 3. 

 
No ΔH 0.7545 4.1433 59.115 

396 
669 

(TEXPL) 
1.0671 4.8166 97.193 

PBX-9502 75 
348 1.857 2.60 1.91 

 
No ΔH 0.7110 3.9580 52.259 

396 
669 

(TEXPL) 
1.0056 4.5207 84.419 

PBX-9502 252 
525 1.700 1.33 3.08 

 
No ΔH 0.4997 2.8691 24.373 

396 
669 

(TEXPL) 
0.7067 3.5066 42.128 
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APPENDIX A 
COMPUTATION OF MAV AND D1AV FOR PBX-9502 

 



 

 A-1

APPENDIX A 
 

Computation of mAV and d1av for PBX-9502 
 
The solid materials considered in this study were chemical mixtures.  For these mixtures, 
the weighted average mass, mAV,  of a single atom in the material was desired. 
 
First, it was necessary to compute the mass of a single atom for each of the elements 
contained in the solid.  Each solid was composed of one or more of the following 
elements: 
 
Carbon, C; Hydrogen, H; Nitrogen, N; Oxygen, O; Chlorine, Cl; Flourine, F. 
 
The mass of a single atom of these elements is: 
 

m = 
AVN

MW  = 
atom
grams

mole) - matoms/(gra
mole) - gram/(gram =     [A-1] 

 
 

Where: 
 

MW= 
mole - gram

grams  

 

Nav = Avagadros Number = 6.02252 x 10+23  
mole - gram

atoms  

 
Table A-1 lists MW and m for each of the elements in the above list.  Values of Nav and 
MW are from various chemistry text books and handbooks. 
 
To compute the average weight (mAV) of an atom in the material, the chemical formula or 
proportional chemical composition is required.  Of course, the weight (m) of each 
elemental atom must be known, since mAV is just a weighted average of the elemental 
atoms in the material.  The procedure is valid for mixtures of compounds as well as 
compounds.  See References [1 – 3] for examples.   
 
When mAV is computed, then the average space between the atoms (d1AV) is given by the 
following relation: 
 

d1av = ( 
°ρ

AVm  )⅓ = cm     [A-2]  

 
Computations of mAV and d1AV for PBX-9502 are included in this appendix. 



 

 A-2

 
 

Table A-1.  Mass of a Single Atom for Selected Elements 

Element MW 
Grams 

Gram - Mole 

NAV 
Atoms 

Gram - Mole 

m 
Grams 
Atom 

Carbon, C 12.011 6.02252(1023) 1.9943(10-23) 
Hydrogen, H 1.008 6.02252(1023) 0.1674(10-23) 

Nitrogen, N 14.008 6.02252(1023) 2.3259(10-23) 

Oxygen, O 16.00 6.02252(1023) 2.6567(10-23) 
Chlorine, Cl 35.45 6.02252(1023) 5.8874(10-23) 
Flourine, F 18.9984 6.02252(1023) 3.1546(10-23) 

 
 
      



 

 A-3/(A-4 Blank) 

 
Table A-2.  PBX-9502 mAV and d1AV 

Chemical Composition: C2.30 H2.23 N2.21 O2.21 Cl0.038 F0.13 [5] 
 

 
C2.30: 2.30 x 1.9943(10-23) = 4.58689(10-23) GRAMS 
H2.23 2.23 x 0.1674(10-23) = 0.37330(10-23) ↓ 
H2.21 2.21 x 2.3259(10-23) = 5.14024(10-23) ↓ 
O2.21 2.21 x 2.6567(10-23) = 5.87131(10-23) ↓ 

Cl0.038 0.038 x 5.8874(10-23) = 0.22372(10-23) ↓ 
F0.13 0.13 x 3.1546(10-23) = 0.410048(10-23) ↓ 

 9.118 ATOMS  16.60560(10-23) GRAMS GRAMS 

 

mAV = 16.60560(10-23) 
9.118 = 1.82118(10-23) GRAMS/ATOM 

 
 

For ρO = 1.891 GRAMS/CC 

 
 

d1AV
3 = 

°ρ
 AVm  = 18.2118(10-24) 

1.891 = 9.6308(10-24) CM3 

 
 

d1AV = 2.12759(10-8) CM = 2.1276 
o

Α  
          

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 
SPECIFIC HEAT (CP) CONVERSION RELATIONS 
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Appendix B 
Specific Heat (CP) Conversion Relations 

 
Experimental Specific heat data are usually given in calories (cal) or Joules (J) per molecular 
weight (MW) per ° centigrade (°C) or ° Kelvin (°K).  That is: 
 
CP = CP (cal. per MW per ° C or °K) 
 
or 
 
CP = CP (J per MW per °C or °K). 
 
Occasionally, CP is presented as cal. or J per gram °C or °K. 
 
CP = CP (cal per gram per °C or °K) 
 
or 
 
Cp = Cp (J per gram per °C or °K) 
 
Note that: 
 
Cp (cal. or J per gram per °C of °K) = Cp (cal, or J per MW per °C or °K)/MW. 
 
Since interest is in Cp (cal or J per atom per °C or °K) then, Cp (cal. or J per atom per °C or °K = 
mAV Cp (cal. or J per gram per °C or °K). 
 
See Appendix A for procedures to determine mAV.  Note that 1° C = 1° K, and that the 
conversion factor between Joules and calories is 4.184 so that: 
 
Cp (J per atom per °K) = 4.184 * Cp (cal per atom per °K). 
 
Also, since 1 Joule = 107 ergs = 107 grams (cm/sec) 2 
 
then, 
 
Cp grams (cm2/sec2) per atom per °K = 107. (J per atom per °K). 
 
The above relations were employed in Reference 2, and the present report.  However, Cp can 
also be given in terms of a velocity squared per °K as follows: 
 

Cp(cm2/sec2 per °K) = 107 x Cp (J per gram per °K).  In these units for Cp, Δ(v.e.)TR  = 

∫
R

EXP

T

T
pdTC  = (cm/sec)2, so CR1PU  =   Δ RT(v.e.) = and CR2PU  = TRv.e)(2Δ = 2  CR1PU . 
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